
The Effect of Quantization Upon
Modulation Transfer Function

Determination
R. B. Fagard-Jenkin, R. E. Jacobson and J. R. Jarvis

Imaging Technology Research Group, University of Westminster,
Watford Road, Harrow, Middlesex, HA1 3TP, UK

n

his

be

IS&T’s 1998 PICS ConferenceIS&T’s 1998 PICS Conference Copyright 1998, IS&T
Abstract

A theoretical treatment of the effect of quantization upon the
determination of modulation transfer functions (MTF) of
digital acquisition devices is initially developed for an
noiseless system, when using sinusoidal targets.

The analytical work shows that a component due to
quantization exists in the measured MTF which increases as
the bitdepth of the quantization and the amplitude of the
input signal decreases. An expression to estimate this
component from parameters describing the input signal and
quantizer is derived.

Modifications are made to account for quantization and
input signal noise, yielding new estimates of the compone
for single measurements. The estimates were experimentally
tested using an analogue to digital converter (ADC).

Introduction

The purpose of quantization in digital image acquisitio
systems is to map a continuous range of input intensities
a discrete set of output values which may be subsequently
used in digital calculations. Representation of the input i
this manner introduces a quantization error, the difference
between the original and quantized signal. The quantization
error will cause a change in the measured MTF of the
system in question.

A difficulty which exists when performing componen
analysis upon digital acquisition devices is the separation of
the effects of sampling from quantization. Most models
consider the change made to a continuous input signal after
being sampled and quantized. The purpose of this work is to
estimate the variation in measured MTFs due to the
quantization process in isolation.

Theoretical Method

A continuous sinusoidal input, E(x), may be described by,
E(x)=a + b cos(2πωx), where a is average signal, b the
amplitude, ω the spatial frequency and x distance[1]. The
modulation of the signal, MIN, is given by:

MIN =
E(x)MAX − E(x)MIN

E(x)MAX + E(x)MAX     (1)
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where E(x)MAX and E(x)MIN are the maximum and minimum
values of the signal [1].

When applied to the input signal, an idealized uniform
quantizer may be represented by the following function:

Q(x) = Int
E(x) × (2d −1)

IMAX

+ 0.5










     (2)

where Q(x) is the signal after quantization and d the bitdepth
of quantization [2]. The quantizer will accept input values
between zero and IMAX. Int[ ]  represents an integer truncatio
function. The difference, ι , in terms of linear input units,
represented by each quantization level is calculated by:

ι = IMAX

2d −1      (3)

Figure 1 shows the effect of the described quantization
function upon E(x). Q(x) has been normalized by
multiplication with ι  to lie in the same range as E(x) and no
spatial sampling has taken place. The quantization function
is non-linear but stationary, thus there are no spatially
dependent effects in Q(x). Discontinuities in the output are
due to the piecewise continuous nature of the function. T
lack of spatial dependency isolates the effect of the
quantization process from that of sampling. This work
assumes that the MTF of the ADC is negligible over the
utilized bandwith.

Quantized Signal Modulation
The modulation of the quantized signal may be

calculated in a similar manner to that of the input:

MQ =
Q(x)MAX − Q(x)MIN

Q(x)MAX + Q(x)MIN      (4)

where Q(x)MAX and Q(x)MIN are the maximum and minimum
values of the quantized signal.

For a given bitdepth, the output modulation may 
plotted with respect to input signal amplitude or mean input
signal level, Figures 2 and 3. The input signal amplitude
and mean level are expressed as a percentage of the input
range of the ADC, IMAX.

The modulation of the quantized signal may be seen to
be different from that of the input and displays reasonably
complex behaviour. It is shown in both cases the quantized
1
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signal modulation oscillates about that of the input. 
frequency and magnitude of these oscillations depends upon
the bitdepth of the ADC used.

Figure 1. A sinusoidal input signal of modulation 0.8 (a=0.5, 
0.4) and its corresponding output when quantized using 3 bits.
The input range of the quantizer is normalized so that IMAX=1.

Figure 2. Input signal modulation and quantized signal
modulation versus mean input signal level. The amplitude of
input signal is constant at 20% of the input range of the ADC

Figure 3. Input signal modulation and quantized signal modu-
lation versus input signal amplitude. The mean level of the
input signal is kept constant at 50% of the input range of the
ADC.
 the
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Quantized Signal Modulation Bounds
The effect of quantization on signal modulation may be

judged from graphs such as Figures 2 and 3, given the input
signal and quantization parameters. This, however, is
impractical in all but a minority of cases, because the actual
quantized signal modulation changes rapidly with respect to
input signal amplitude and mean level. Thus, a small change
in input parameters may yield a large change in the estimate
of the effect caused by quantization. It may also be
reasonably assumed that the signal modulation reaching the
quantization stage of an imaging device is difficult to
estimate accurately due to its modification by the optical
image forming, spatial sampling and amplification stages.

A better method is to estimate the maximum, rather
than actual, effect that quantization may have upon the
signal modulation. This is based upon the maximum
quantization error and effectively calculates an envelope
containing the quantized signal modulation function.

The quantization error, ε, is clearly visible as the
difference between the input signal and the quantized output,
Figure 1, and may be defined:

   ε = E(x) – Q(x)     (5)

For a perfect quantizer, it may be shown the magnitude
of ε does not exceed ι  /2 [3]. Minimum quantization error
occurs when the input signal coincides with an ADC
decision level and is therefore zero. Given the possible quan-
tization error, the range of values that the quantized signal,
Q(x), may take for a given value of the input, E(x), is:

E(x) − ι
2

≤ Q(x) ≤ E(x) + ι
2      (6)

To calculate the described bounding envelope, QMAX and
QMIN are substituted in Equation 4 by the extremes of th
above range. The upper and lower values of the envelope
then found by rearranging the resulting formulae and solving
to yield the maximum and minimum functions. It is found
that the upper and lower boundaries of the envelope are then
(Figures 4 and 5):

MQMAX
=

E(x)MAX − E(x)MIN + ι
E(x)MAX + E(x)MIN      (7)

MQMIN
=

E(x)MAX − E(x)MIN − ι
E(x)MAX + E(x)MIN      (8)

Given the input signal amplitude, mean level and
quantization bitdepth for an ideal quantizer, the quantized
signal modulation would be expected to fall between the
bounds of the calculated envelope. This approach is
improved as it provides limits as to the maximum
magnitude of the quantization effect for given circumstances.
This simple calculation also enables a better estimate of 
significance of the quantization process within the examined
imaging system to be made.

In order to better understand the magnitude of the
quantization effect on the input signal modulation, the
difference between the envelope bounds and the input signal
modulation may be expressed as a ratio (or percentage) of
02
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input signal modulation. These modified upper and lower
bounds, ∆MMAX and ∆MMIN, are calculated using:

∆MMAX =
MQMAX

− MIN

MIN        (9)

∆MMIN =
MQMIN

− MIN

MIN       (10)

Figure 4. The calculated envelope versus mean input signal level
for a 3 bit ADC. Input signal amplitude is kept constant at 20
of the input range of the ADC.

Figure 5. The calculated envelope versus input signal amplitude
for a 3 bit quantization stage. The mean level of the input signal
is kept constant at 50% of the input range of the ADC.

For a specified input signal and quantization bitdepth
the percentage deviation from the input modulation caused
by quantization would be expected to be between these
calculated bounds. It may be shown that the magnitudes
∆MMAX  and ∆MMIN are equivalent and may be denoted ∆M .
This enables the expected quantized signal modulation to be
written as MIN±∆M. Expanding ∆M it is found:

∆M = IMAX

2(2d −1)b    (11)
20
%

 of

This result is significant as it ∆M  may be seen to be a
function of b, d and IMAX only. Thus, the percentage change
expected in modulation is only dependent upon the input
range of the quantizer, the bitdepth of the quantizer and the
amplitude of the input signal. Figure 6 shows that the
relative change in the input signal modulation increases as
the amplitude of the input signal and the bitdepth of the
quantization decreases.

The input signal amplitude necessary to reduce the
quantization effect to within a specified value may be
calculated by rearranging Equation 11 to yield b:

    
b = IMAX

2(∆MMAX − 2d ∆MMAX )    (12)

Signal and Quantization Noise
The above is derived for a perfect system, which in

practice rarely occurs. The input signal and quantization
process will include noise, causing the effect of quantization
to be under-estimated for single measurements. The effect of
the noise in both cases may be included to yield new bounds
for the quantized signal modulation.

It is assumed that noise present in the input signal is
Gaussian distributed and ergodic. A convenient way to des-
cribe the variation in the input signal that this introduces is
to use the 2σ deviation of the intensity fluctuations, as 95%
of values will fall within these limits[4]. Thus, the input
signal including noise may be represented as E(x)±2σ. The
2σ deviation describing the input signal noise is included in
Equation 6 in order to yield a modified range that Q(x) may
take for given E(x) with noise of variance σ, below:

E(x) − 2σ − ι
2

≤ Q(x) ≤ E(x) + 2σ + ι
2    (13)

Figure 6. The calculated envelope versus input signal amplitude
for 3, 4 and 5  bit ADCs.

The internal electronics of the quantization device will
generate noise. Thus, it is common practice when purchas-
ing an ADC for the quantization bitdepth to be quoted in
combination with an error term for the device. The error
term is quoted as a fraction of the least significant bit (LSB).
Thus, an eight bit ADC may be described as d bits ± n LSB.
3
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The LSB represents a single quantization level, thus the
error term may be converted into linear input units simply
by multiplication with ι , becoming ±nι . Again, in a similar
manner to above, this term may be included in Equation 12
to calculate the range of values that Q(x) may take given an
input signal with noise of variance σ and aquantization stage
with noise of ± nι :

E(x) − 2σ − nι − ι
2

≤ Q(x) ≤ E(x) + 2σ + nι + ι
2      (14)

Q(x)MAX and Q(x)MIN in Equation 4 are substituted for b
the extreme limits of the modified range for the real system
in a similar manner to before. The resulting equations are
solved to find the maximum and minimum bounds of the
quantized signal modulation. The calculated bounds for the
quantized signal modulation including the effects of noise 
then:

  
MQMAX

=
E(x)MAX − E(x)MIN + 4σ + ι + 2nι

E(x)MAX + E(x)MIN    (15)

   
MQMIN

=
E(x)MAX − E(x)MIN − 4σ − ι − 2nι

E(x)MAX + E(x)MIN    (16)

These modified bounds, are greater than for the ideal
system, thus an increased component in the measured MTF
is predicted for a given set of system parameters. It is
possible as previously to express these limits as a ratio w
respect to the input signal modulation:

∆M = IMAX

2(2d −1)b







+ nIMAX

2d −1




 + 2σ

b






   (17)

As previously, ∆M is seen not to be a function of a.
The input signal amplitude necessary to reduce this
component to a required level may again be calculated by
rearranging and solving for b, below:

b = (−1− 2n)IMAX + (1− 2d )4σ
2(∆M − 2d ∆M)    (18)

As the values of nι  and σ are fixed for a specific ADC
and input signal, the minimum effect due to quantization in
the system is increased.

Experimental and Results

Sinusoidal waves of varying amplitude and a mean level of
zero volts were generated using a Farnell LFM4 wave
generator. Their amplitude was measured using a Hameg
HM203-7 oscilloscope. The variance, σ, of the input signal
noise was estimated using the oscilloscope and recorded as
5.45mV.

The generated signal was fed into a simple analogue to
digital conversion circuit, consisting of a TL061 operational
amplifier and Ferantti ZN449E ADC[5]. Digitization was
controlled and data captured using the user port of a BBC
Micro model B computer [5]. Quantized maxima and
minima were recorded for each sinusoid.
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The 8 bit ADC uses successive approximation to
digitize the signal and has a quoted error of ±1 LSB [5]. The
effective input range of the ADC was measured as  ±1.31V.
The sampling rate achieved in combination with the
computer was ≈225 samples per second. Therefore, by
maintaining the generated sinusoid at a frequency of 10 Hz,
the effects of spatial sampling, such as aliasing, we
minimized.

In order to perform calculations, the input range of the
ADC was represented as lying between 0 and 2.62V, thus
IMAX=2.62. This was also reflected in the calculation of the
maxima and minima of the sinusoids, the mean level, a, of
which were represented as 1.31V.

For each sinusoid, the input maxima and minima,
E(x)MAX and E(x)MIN, were calculated using the measured
amplitude, b. The input signal modulation, MIN was also
calculated. Using the quantization bitdepth, d, the quoted
ADC error, n, and the measured variance of the input signal
noise, σ, Equations 15, 16, and 17 were used to calculate
MQMAX, MQMIN, and ∆M. The actual quantized signal
modulation was calculated from the measured quantized
maxima and minima, Q(x)MAX and Q(x)MIN, recorded by the
computer.

Results
Figure 7 shows measured quantized signal modulation

versus input signal amplitude for the described system. Also
shown are the envelope bounds, MQMAX, MQMIN, calculated
using the above theory for the system in theoretically ideal
and noisy conditions. Figure 7 shows the measured
percentage change of the input signal modulation against
input signal amplitude included with the calculated bounds

Figure 7. Measured quantized signal modulation versus input
signal amplitude for the Ferantti ZN449E 8 bit ADC. Also
shown are the  theoretical bounds calculated for an ideal and
noisy system.

The figures clearly show that a change in modulation
exists due to the quantization of the signal. It is evident
from Figure 8 that all measured points shown fall within t
calculated theoretical bounds for the system when noise is
included and a significant number within the bounds
predicted for the ideal system. This suggests that the limits
provided by the above theory are reasonable.
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As the 2σ variance is used to describe the input signal
noise, 5% of the noise values are excluded from the
description. This leads to a slight chance that a quantized
signal modulation value will fall outside of the calculated
limits. This was not the case in this experiment.

Figure 8 shows that the percentage change in the input
signal modulation increases as the input signal amplitude
decreases. This agrees with the trend predicted by the theory.
Significantly this will lead to an increase in error for high
frequencies when using sinusoidal targets to measure MTF.
This is due to the decreased modulation of those frequencies
by components prior to the quantization stage.

Figure 8. Percentage change in the input signal modulation
versus input signal  amplitude for the 8 bit ADC. The theoretical
bounds calculated for an ideal and noisy system are also show

Conclusions

A theoretical study has been performed upon the effect of
quantization on modulation transfer function measuremen
the absence of spatial sampling effects. The work clearly
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shows that there is a non-linear component in measured
MTFs attributable to the quantization process when using
sinusoidal test targets. This component is shown to 
complex in nature, varying with respect to the input signal
amplitude and quantization bitdepth. The general trend of
this component is to increase as the quantization bitdepth
and input signal amplitude decrease.

Formulae have been derived to calculate an envelope
which predicts the bounds of the quantized signal
modulation, given the input signal and quantization
parameters, for ideal and noisy systems. Experimental
results correlate well with the theoretical work suggesting
validity of the description within the constraints given.
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